The politics of cryptography: bitcoin and
the ordering machines

Quinn DuPont

quinn.dupont@utoronto.ca

Faculty of Information, University of Toronto

Keywords: cryptography, bitcoin, computation, code, crypto-anarchism

Abstract

This paper explores the cryptographic aspects of bitcoin. Over two short primers (of advancing
specificity) the cryptography in bitcoin is described and contextualized. | offer a description of a full
bitcoin transaction to contextualize the terminology and concepts from the primers. | then offer a
condensed version of a generic framework for conceptualizing cryptography, as an alternative to
Shannon’s Mathematical Theory of Communication which will shed light on the politics of cryptography.
As a form of praxis | describe my experiences running a bitcoin mining machine. Finally, | critique and
reimagine Gilles Deleuze’s work on the control society, and suggest that cryptography functions as a
“new weapon” in a logic of Order.

It was April 10", 2013 and the price of a single bitcoin surged past 250 USD on the Mt. Gox exchange. A
few months prior | had purchased seven bitcoins for just under $200, now nearing $2000 in value. But,
just as fast as the market went up, it came down. | was panicked like an amateur gambler but lulled by
my humming money machine, permuting cryptographic codes by the millions every second. The price of
bitcoin was being pushed up by a number of factors: mainstream interest, a sustained distributed
denial-of-service attack on Mt. Gox (the main bitcoin exchange), and people like me, gambling in the
newest crypto-anarchist adventure.

Bitcoin is a fiat currency, like many others (electronic or not), and requires human belief to sustain
value. Without government backing fiat currency needs another sustaining ideology—people need to
believe that the currency will persist and retain value. Persistence and value are eroded by shaky
ideology (e.g., a weak government) and technical flaws (e.g., fraud, counterfeiting, hyperinflation).
Bitcoin ideology rests on the general view that cryptography is a panacea, an alchemic universal solvent,
or (put crudely) magic fairy dust. The libertarian rhetoric surrounding bitcoin reflects this general
ideology. Avoiding technical flaws in bitcoin is (thought to be) largely due to cryptography as well.
Counterfeiting and double-spending is prevented as a result of public key cryptography, and
hyperinflation is kept in check due to the ability to cryptographically ensure the measured production of
money (with a maximum number of coins produced).

Cryptography is easily operationalized—best practices ensure secure information—but still poorly
understood. According to a standard account cryptography ensures “information security” or its slightly
older cousin, “information secrecy” (see e.g. Kohno et al., 2010). But, how does monetary value arise
from information security or secrecy? Security and secrecy are usually understood in terms of social
relations (c.f. Bellman, 1979). Modelled in its simplest formulation, a secret is some information that |
possess and you do not, while information security might be described more abstractly, as control of
information within a relationship. All fine and well, monetary value can surely arise from exclusivity, but
what is the function of cryptography here? (Does the monetary value of bitcoin arise from exclusivity?) |
argue that cryptography is both central to bitcoin and yet produces a non-secret set of powers for its
social effect, which includes monetary value.

To date the most influential conceptualization of cryptography is Claude Shannon’s (1945) linked notion
of secrecy and information. Prior to his famous Mathematical Theory of Communication (MTC)
(Shannon and Weaver, 1948) Shannon had been working on war-time encryption systems. Shannon’s
cryptographic work stemmed from a long line of influences and prior work (Nyquist, Hartley, Wiener,
and so on) (Thomsen, 2009), as well a rich conceptual backdrop spanning from at least the Renaissance
(Porta, Bacon, Wilkins, Leibniz and many others) (Cherry, 1953; Geoghegan, 2008). Although only
occasionally recognized, the histories of information and cryptography are intimately tied (see e.g.,
Gleick, 2011). It is telling that Shannon developed his account of cryptography and then his account of
information, just as Bacon twinned cryptography and logic, or Wilkins’ cryptography and classification.

This cryptographic work set the stage for Shannon’s more general, and more rigorous portrayal of
information in the MTC. In contrast to much of the engineering work being done on information
transmission at that time, Shannon focused on discrete rather than continuous signals (Thomsen, 2009).
Drawing on Hartley, Shannon bracketed the issue of meaning, and discussed only how much information
can pass through a channel. This conceptualization, combined with Nyquist’s observation that
information transmission obeys a logarithmic rule allowed Shannon to generalize the issue, and show

that information accords to physical properties about the world (modeled as entropy) (Aspray, 1985;
Hayles, 1999).

It was in working out the coding issues for cryptography that Shannon developed his theory of
information. Left somewhat implicit in Shannon’s account, however, was the issue of secrecy (despite
being in the title). Shannon argued that his account only pertains to “true” secrecy systems, for which
the “meaning of the message is concealed by cipher, code, etc.” (Shannon, 1949). Despite this slip about
“meaning” Shannon had a clear sense of his MTC as early as 1945 (this sentence remains in the
declassified 1949 version, although both versions are very explicit to reject any “psychological” account).
Shannon defines cryptography abstractly as the transformation of information from one space to
another. Secrecy arises from the “a priori probability associated with... choosing that [enciphering] key,”
which is a function of the statistics of “transformations of one space into another” (Shannon, 1945). In
ideal situations secrecy becomes a matter of making guesses in the presence of a stochastic
phenomenon.

As conceptualized by Shannon, the cryptography in bitcoin leaves open as many questions as it answers.
Shannon’s work is conceptually powerful (enabling massive engineering developments), but historically
vacuous and philosophically incomplete. Before Shannon “won,” the field was less settled (Cherry,
1953); competing conceptualizations existed but none were better prepared than Shannon’s for the
coming cybernetic and then informatic changes. By identifying Shannon’s MTC as the endpoint of
cryptographic conceptualization we risk teleological explanations, and make archaeologies of
cryptographic mechanism very strange (for the thousands of years of cryptography before the
introduction of mathematics—with the Arabs and then Leibniz—what was cryptography?). Even if we
accept mathematics as a master logic, how do we account for the human, or even the machinic? And
specific to bitcoin, how do these transformations occur? From where does value arise? Perhaps the
most central of all, what is the politics of bitcoin itself?

This paper will first offer a largely non-technical account of bitcoin cryptography using accepted
(engineering) terminology. Over two short primers (of advancing specificity) the cryptography in bitcoin
will be described and contextualized. | offer a description of a full bitcoin transaction to contextualize
the terminology and concepts from the primers. | then offer a condensed version of a generic
framework for conceptualizing cryptography, as an alternative to Shannon’s that will shed light on the
politics of cryptography. | then return to my introductory story of praxis and describe my experiences
running a bitcoin mining machine. Finally, | critique and reimagine Gilles Deleuze’s work on the control
society, suggesting that cryptography functions as a “new weapon” in a logic of Order.

Cryptography primer

Before | turn to the cryptography used in bitcoin it will be helpful to get some of the basic terminology
and functionality of standard cryptography out of the way. This account, while conceptually incomplete,
will start the process of translating engineering language into more philosophically salient terms.

The cryptography used in bitcoin is not unusual or exemplary, in fact, there are no cryptographic
innovations in bitcoin (in computer security terms, this is a virtue of the system). Bitcoin uses a standard
SHA-256 hashing algorithm. This hashing algorithm is put to some seemingly strange uses, but nothing
unique to the history of cryptography since the development of public key cryptography in the 1970s.

Introductory primer

For the vast majority of the history of cryptography, its development from substitution ciphers and code
systems to polyalphabetic and keyed algorithms, the encrypting mechanism was unitary. With the
invention of public (or asymmetric-) key cryptography in the 1970s it became possible to create a system
that “split” the cryptographic key. (Asymmetric-key cryptography was initially invented in 1973 at the
Government Communication Headquarters in the UK by James Ellis, Clifford Cocks, and Malcom
Williamson but kept secret; it was then publically re-invented in 1976 by Whitfield Diffie and Martin
Hellman.) Splitting the cryptographic key ushered in new uses for cryptography, and was well-timed for
the coming advance of the Internet and popularization of point-to-point electronic communication.

In this short introductory primer | will describe three related sets of technology: symmetric-key

|II

(“traditional” or “classical”) cryptography, asymmetric (public) key cryptography, and hashing algorithms
(an offshoot of asymmetric-key cryptography, but because it features centrally in bitcoin | will spend
some extra time on its exegesis). It should be noted that this primer accepts the problematic distinctions
of contemporary cryptography (and there are many, although usually unacknowledged), as well as the
accepted technical nomenclature. In the end, this article will go some way to implicitly problematize

these accepted divisions, although | acknowledge that an extended critique is still wanting.

What all forms of cryptography share is the syntactic transformation of symbols. While this
conceptualization is generally accepted by the cryptographic community, | will later complicate this
definition by offering a different conceptualization based on the same basic principles but offering a
much needed semantic aspect. In simple “code” systems (often called a “nomenclator”) a letter, word,
or entire phrase may be replaced with an alternative (the substitution presumably kept private between
the two communicating parties) (Kahn, 1967). The basic principle is captured by so-called substitution
ciphers, which exchange one letter for another in a deterministic manner. Implied is a simple but
profound characteristic of all cryptography—that cryptography requires discrete symbols ordered in
various ways. Later, we’ll see that this fact is philosophically pertinent and the crux of the politics of
bitcoin.

From this mechanism more complicated forms of cryptography were invented. Polyalphabetic
cryptography uses multiple alphabets for the substitution (or what might be called transposition within
a larger combinatoric space), sometimes jumping from one alphabet to another according to an agreed-
upon secret “key.” In more recent usage the key became analytically separated from the cryptographic
algorithm as a result of “industrial” uses of cryptography that require reusable ciphers. When
cryptography shifted from a craft to a mechanized application the algorithm became fixed, and the key
became the mutable, secret part.

Cryptographic keys (or “passwords”) are often misunderstood as being necessary and primary to
cryptography. In fact, the key is no more central than the set of transformations (and should be
characterized as part of the system of transformation). For much of the history of cryptography no
notion of cryptographic “key” existed. For purposes of cryptanalysis (“codebreaking”) a key is only as
valuable as knowledge of the corresponding mechanism or set of transformations. Yet, in recent years
cryptographic ideology has come to espouse the belief that the best practice is to keep the key secret
and the mechanism public (working on the assumption that the mechanism will eventually be
discovered and reverse-engineered).

Symmetric-key cryptography employs the same key for encryption and decryption, so the shared secret
item is identical among parties. The obvious downside is that to maintain secret communications all
parties must ensure that the shared key is kept private from any so-called adversaries. Modern forms of
symmetric-key cryptography work on digital bits, either encrypting the bits one at a time (or, more
realistically, encrypting byte by byte or in prescribed bit-length “words”), or grouping the bits into blocks
(and adding padding as needed so that each block includes the same number of bits). The former is
known as a stream cipher, the latter a block cipher. Other non-cryptographic features may be present in
a modern cryptographic system, such as error detection, compression, and so on.

The symbolic transformations in symmetric-key cryptography are fundamentally the same as that of
asymmetric-key cryptography—in fact, symmetric-key primitives can be used to build asymmetric-key
systems. The sole (but critically important) difference between symmetric-key and asymmetric-key
cryptography is that rather than sharing a single (unitary) secret key, asymmetric-key cryptography uses
a binary key, in which the two parts are linked and both are required to decrypt and encrypt. By splitting
the key into two linked parts one part can be kept secret, while the other is made public (the parts are
typically linked mathematically—e.g., prime factorization or calculating the discrete logarithm—but any
suitable mechanism could be used). The private key should not be easily deducible from the public key,
yet the public key should be easily deducible from the private key (using so-called mathematical trap-
door functions). A trap-door function such as exponentiation modulo is based on current mathematical
knowledge that it is easy to calculate the remainder when a number is raised to some power, divided by
another (the modulus), yet, if given all the information other than the exponent, it is very difficult to
solve for the exponent (i.e., it is slow to compute the discrete logarithm). Only when the secret key is
possessed is it easy to open the trap door, otherwise the calculation is slow (but certainly tractable).

Such a setup offers several interesting possibilities. The key used to encrypt a message is not the same
key used to decrypt it, so therefore | may encrypt a message with your public key, in which only you can
decrypt (using your linked private key). Configured this way, | can send you a message that only you can
read (akin to placing a piece of mail in a publicly-accessible but locked mailbox), and you can do the
same for me by using my public key, ensuring confidentiality. (More complicated three-pass schemes
are possible too, in which | encrypt a message and pass it to you, then you encrypt the already-
encrypted message and pass it back, | then decrypt my encryption and pass it back to you, at which
point you can finally decrypt your encryption and read the message—successfully transferred in public
while remaining encrypted.) Similarly, if | encrypt a message with my private key and send you both my
message and the encrypted message (or a “digest” of it), your ability to decrypt the encrypted message
with my public key ensures that the message is authentic (non-repudiated, or, guaranteed to be mine).
These features work to permit secret message communication without ever requiring a secret
communication channel, or to ensure that a message has not been changed. In a world where the
communication channel is necessarily open to eavesdropping asymmetrical-key cryptography performs
a kind of magic trick: secret messages over public channels without ever requiring the prior transmission
of secret information.

A related application of asymmetric-key cryptography is the hash function. A hash function is a set of
permutations that transform some data into a fixed-sized output (a digest), which changes considerably
given even a slightly different input datum. When a hash function uses cryptographic mechanisms to
create the digest it can be used to ensure the message is not repudiated (its integrity can be verified),
which is especially useful for creating compact, easily transmittable “fingerprints” of data. Similarly, by

computing a hash for a password the hash may be stored in place of the secret password, and
authenticated against the digest representation instead of the actual password (allowing the digest to
be captured by an adversary without losing secrecy).

An aside: it should be noted that because asymmetric-key cryptography relies on a ratio of effort for
trapdoor or one-way functions—that it is relatively harder to reverse the function than it is to compute
it—given enough time and effort asymmetric-key cryptography is quite susceptible to cracking. Unlike
symmetric-key cryptography, in which it is possible (although unwieldy) to create mathematically-
guaranteed secrecy, asymmetric-key cryptography can at best make it much more difficult to reverse
the cryptographic function than it is to perform the encrypting function. The ratio of cryptanalyse-to-
encryption may be 1000/1 or 1,000,000/1, but with enough time all asymmetric-key cryptographic
functions succumb to cracking. Due to this known weakness, digests of passwords are typically also
protected by non-cryptographic access mechanisms. If cryptographic digests are known to be exposed
to the public it is typically only a matter of time until they will be cracked, so good security practice is to
require new passwords and corresponding digests for compromised data stores. Given the advent of
GPU cracking (and soon, powerful repurposed bitcoin mining machines) hashed passwords are
cryptanalysed rapidly, even as much as 60-90% of a corpus within an hour, according to a recent
cracking “game” conducted by technology website Ars Technica (Goodin, 2013).

The hash algorithm used in bitcoin is SHA-256, a protocol for hashing in the Secure Hash Algorithm 2
family that outputs 256 bit digests. SHA-256 is composed of a simple set of logic transformations
configured to perform the necessary mathematical trap-door function required by the asymmetric-key
cryptography. Thus, described in terms of levels of abstraction from the basics of digital computation to
a full ASCll-encoded hash digest, the SHA-256 hash algorithm operates as such: electromagnetic flux is
discretized on a clock-cycle; bits are then transformed using logical operations performed by transistors;
the binary representation is collected into 64 bit “words” that function as high-level data structures
(integers); mathematical trap-door/one-way functions are constructed from the set of transformations
(+, and, or, xor, shr, rot), with the entire algorithmic structure corresponding to the Merkle-Damgard
padding and compression scheme; the resulting 256 bit hash digest may be encoded into a 64 ASCII-
encoded character string for portability and human-readability. In sum, SHA-256 is the process of
successively interpreting electric-magnetic flux as a series of different ordering mechanisms or
techniques. The primary ordering is the first: from flux to binary, and once this discretization is accepted
as real (by fiat) the ordering techniques are limited only by human imagination.

Advanced primer

The fundamental cryptographic algorithm used in bitcoin is SHA-256, however, the conceptual utility of
this hashing algorithm as used in bitcoin draws on a recent history of previous academic and practical
developments. Of the numerous developments, the most significant and relevant are: Ralph Merkle’s
hash-trees (patent filed in 1979), David Chaum’s blind signatures (1982), Adam Back’s hashcash proof of
work system (1997), Wei Dai’s b-money scheme (1998), Nick Szabo’s bit gold concept (1999), and Hal
Finney’s reusable proofs of work (2004).

In addition to having a hand in the invention of public key cryptography, Ralph Merkle developed a
system for efficiently verifying large data structures through a tree structure of hash digests (Merkle,
1982). As described above, a hash digest can be used to verify the non-reputability of a datum, but for

large data structures it would be extremely time-consuming to perform a hash function on every datum.
Merkle realized that by organizing hash digests into a tree structure (where each node is a hash digest) it
is possible to compute the hash digest for only the top-most node (while authenticating the left and
right nodes) rather than every node, to ensure non-reputability. Hash trees are commonly used to
ensure data integrity, but when used with cryptographic hash functions every prior message is checked
for authenticity (none of the messages can be faked).

Blind signatures are another result of public key cryptography being used in unexpected ways. In
Chaum’s original conceptualization for blinded signatures, payment systems with the anonymity of cash
but the security of digital money were the intended target (Chaum, 1982). By using public key
cryptography Chaum proposed a system that ensured 1) the inability of third parties to determine
information about the payee, 2) the ability of individuals to provide proof of payment, and 3) the ability
to stop payments when needed (in cases of theft). Chaum envisioned a digital equivalent of paper
envelopes lined with carbon paper. By writing a signature on the outside of the envelope a second
“blind” signature is duplicated on the inside. In Chaum’s example of authenticated secret voting, the
blinded signature is sent to the elector, removed from the envelope, signed by the elector, and mailed
back to the voter in a new envelope (thus only the elector views the signature). If a voting dispute arises
the signatures can be authenticated against the signatures on the envelopes, but each vote remains
anonymous.

While the mutability of binary digits is useful for much computing, a system of ecash requires the
opposite quality: money needs to be made solid, slow, and non-replicable. Originally proposed and
developed by Adam Back (1997) for limiting email spam, hashcash uses two facts of public key
cryptography: non-reputability of hash digests, and the computational difficulty of finding a hash
“collision.” Due to the fact that it is impossible to predict the outcome of a hash function on an arbitrary
input (with current knowledge of the mathematical underpinnings of asymmetric-key cryptography used
in hash functions), but easy to verify the results, a challenge-response mechanism can be created to
require “work” (computational effort). By arbitrarily requiring a specified output of a hash function (say,
the first 20 or more bits of the hash digest must be zeros), the sender can establish a “difficulty”
threshold. The only way to find a hash digest with a specified output is to compute the hash of a
different input value over and over until the result meets the necessary difficulty, and since the result
can be verified easily the receiver of the hash function does not need to repeat the computational work
to verify that the sender expended a set amount of work. For its original purpose of limiting email spam,
the requirement to perform work when sending email would make sending email slow and
computationally expensive, thus, sending a single email would result in a modest slow-down, but
sending millions would become nearly impossible (or at least would require many expensive
computers). In such an email system any email that was sent without corresponding evidence of
computational work would not pass verification by the receiver (which is a quick calculation, in
comparison to performing the original hash calculation), and would be discarded.

As part of the discussion of applications of Back’s hashcash proposal on the Cypherpunks mailing list Wei
Dai proposed a system of currency generation using the mechanism of hashcash (Dai, 1998). (At this
point the anarchist/libertarian undercurrents are completely at the fore, Dai starts his proposal, “l am
fascinated by Tim May's crypto-anarchy”). Dai applies Back’s hashcash mechanism to establish an
anarchist world in which cryptography functions for the “medium of exchange” and as a way to “enforce
contracts,” without the interventions of a government (Dai, 1998). The creation of bmoney is

accomplished by requiring a specified amount of computational work (which anyone can perform) and
when verified by the community a collective ledger book is updated, awarding the worker the specified
funds. In the bmoney proposal exchange of funds is accomplished by collective bookkeeping
(authenticated with cryptographic hashes), and contracts are enforced through the broadcast and
signing of transactions with digital signatures (i.e., public key cryptography).

Hal Finney (2004) extended the bmoney and hashcash proposals by suggesting a formalization of the
proof of work mechanism, a scheme that permits the reuse and exchange of proof of work tokens (hash
digests). With these extensions it became possible for Nick Szabo (1997) to conceive a system that
accurately calculates the “difficulty” of proof of work for the purpose of money generation, and to allow
the generated money (hash digests) to be exchanged and reused.

How bitcoin functions

When the pseudonymous programmer Satoshi Nakamoto proposed bitcoin in 2008 it built on the
crypto-anarchist developments from the following two decades (Nakamoto, 2008). In terms of
invention, bitcoin introduced a modest change to the bmoney, bit money (and other) proposals already
in existence. Rather than require a single collective ledger of transactions, or awkwardly share the ledger
among parties, Nakamoto suggested that a “blockchain” contain all transactions (including generated
money by “miners” performing cryptographic proofs of work). The blockchain is a Merkle hash tree of
transactions. For each transaction the mining servers verify the hash digests that result from
transactions (incentivised to perform computational work by being awarded money for successfully
performing proofs of work). The transactions are verified by the miners and grouped into “blocks”; once
the top node of each block is verified a specified amount of work is required to seal the block and win
the resulting money.

A full round of a transaction is described in the following. Money is stored in a wallet, which is a unique
hash digest generated by each user (and any number of wallets are possible). To send you money | first
digitally sign the transaction request with my private key (that is, | perform asymmetric-key encryption
on the transaction request data). Using my public key, the network can verify my transaction request.
The transaction request is sent (via peer-to-peer communication protocols) to the network and then
bundled with others into blocks every ten minutes. Each block includes a hash digest of the previous
blocks (arranged in a hash tree), a hash digest of the current block, and a “nonce”. A nonce is added
input that (when hashed) results in a radically different output. Only when an output value meets a
certainly “difficulty” (verification of proofs of work) will a block be considered authenticated (the
difficulty is specified by requiring at least n leading zeros in the hash digest output, set by the protocol to
regulate the speed of block generation). As each subsequent block is verified the previous blocks fall
further down the hash-tree, with the newer hashes contingent on the previous hash digests’ value. In
this way any fraudulent changes to the blockchain are instantly discovered (and rejected).

It is improbable to create fraudulent transactions because as time goes on, and block upon block is
verified by the miners, fraudulent transactions would require changing every subsequent block, at a rate
greater than the (legitimate) network of miners. A fraudulent block would only be accepted if the
alternative blockchain was longer, which would require performing more proofs of work than the
legitimate network. (Of course, this is the ideal scenario. Any competing network of greater
computational power could best the legitimate one, and therefore human vagaries of collusion and

consolidation come to play. This has actually happened, when due to a technical bug the blockchain
became “forked,” and was only reset when a cabala of powerful mining pools colluded to switch to the
“corrected” blockchain.)

Conceptualizing cryptography

Do the existing conceptualizations of cryptography make sense for bitcoin? Bitcoin transactions can be
modelled as a Shannon communication channel, but what role does secrecy play? It has been alleged
(by crypto-anarchist proponents of bitcoin) that bitcoin is anonymous and privacy-ensuring, yet nothing
further could be true! The fundamental innovation in bitcoin as compared to the prior hashcash, bit
gold, and bmoney schemes is the blockchain. The blockchain is necessarily public and amounts to a
bookkeeper’s dream, recording every transaction. Once a “real” identity is linked to a hash digest every
transaction is recorded and publically visible. If there is any secrecy or privacy it results from the social
fact that | may choose to keep my hash digest private (that is, not associate any personal information
with the hash digest). Even this breaks down in practice, as any “adversary” of whom | engage with can
expose identifying information about a particular hash signature. For example, a much-lauded example
of bitcoin use is for buying mail-order drugs. If the drug-seller released his or her mailing database it
would be trivial to connect my hash digest with my mailing address. Similarly, if | used the same wallet
to perform innocuous transactions (perhaps filling it with funds converted from other currencies), and
then went on to purchase mail-order drugs, any release of my identity associated with that hash digest
would reveal all of my transactions.

Even if bitcoin was configured in such a way that it did preserve privacy, perhaps employing a blind
signature mechanism yet still managing to guard against double-spending, would “information secrecy”
still be the correct way to conceptualize how cryptography is being used? | argue that it would not, and
that bitcoin is not the only use of cryptography that cannot be cashed out in terms of information
secrecy. The history of cryptography is much longer and richer than usually thought and intersects with
many domains, including the development of scientific practice, modern classification theory, linguistic
and semiotic developments, hermetic and cabalalistic practice, and discrete mathematics. For reasons of
brevity this history cannot be told here—although it very much still needs to be done—but these various
uses highlight the fact that cryptography has long been used for non-secret purposes.

Instead of focusing on a singular use of cryptography, | introduce a framework in which secrecy becomes
only one of the possible (unlimited) uses of cryptography. The framework conceptualizes cryptography
in terms of uses or powers (e.g., secrecy, hermeneutical exploration of the natural world, philosophical
languages), and analytical requirements. So long as a proposed use of cryptography corresponds to the
analytical requirements it can be legitimately called cryptography. Thus, cryptography is broad enough
to include bitcoin (economics), but also for example, Jim Sanborn’s cryptographic art Kryptos
(aesthetics), or John Wilkin’s (1668) attempt to develop a philosophical language
(logic/classification/method).

Within the framework (here only briefly described), cryptography is a derivative notational system
sustained by second-order metaphor. These requirements rely on Nelson Goodman’s (1976) careful
articulation of a notational system, but rather than a notational system with reference to the real, full-
blooded world, cryptography works only from mark to mark (a mark can be an utterance, textual
inscription, etc.). Goodman argues for a set of syntactic and semantic requirements for a notational

system that (to speak precisely) prescribes a “digital” system. The discreteness requirements of
Goodman’s notational system ensure that no ambiguity can enter the system: notational symbols
univocally refer to their referents. These requirements are (roughly) unambiguity, disjointedness,
differentiation. For Goodman, many encoding schemes potentially qualify as notational, such as binary,
Morse code, musical notation, dance notation, and so on (it is important to note that these notations
only count as proper notational systems on Goodman’s terms if the semantic requirements are also
met, which is not typically how these systems are understood as operating).

By adapting Goodman’s notational system to apply only to marks (a derivative system) the syntactic and
semantic requirements obtain from mark to mark. While the syntactic requirements are relatively
unproblematic, the semantic requirements are unusual and require further elucidation. | argue that the
semantic properties are sustained through a second-order functioning of metaphor. While the non-
cryptographic sense of metaphor employed in typical signification (of which | have no account for,
preferring a pluralism) is complicated, rich, and profoundly productive in human language, this second-
order metaphor is comparatively weak and narrow. Borges (2000) offers a helpful comparison by
invoking “mere shuffling” as a weak form of metaphor,

Any metaphor, as beguiling as it may be, is a possible experience, and the difficulty
lies not in its invention (a simple thing, attained by the mere shuffling of fancy words)
but in achieving it in a way that astonishes its reader.

A second-order metaphor between of mark to mark is the (semiotic) substitution of one mark for
another, maintained in some kind of memory (perhaps held in neural memory, inscribed on paper, or
stored in a digital computer). For example, the second-order metaphor of the mark “A” for “D” is
legitimately an encryption of “A” (so long as the rest of the notational system maintains the
Goodmanian properties of unambiguity, disjointedness, and differentiation).

With these requirements any number of notational systems may count as cryptography (binary,
compression algorithms, source code compilers, and so on), and yet they may have very different uses. |
acknowledge that this broad account results in the (possibly) odd suggestion that “code” may become
cryptographic. | see this to be a virtue of the account. For example, the difficulty of cryptanalysing a
compressed file is often equal to cryptanalysing “proper” cryptographic systems. Likewise, we often
equivocate on the plurality of meanings of “code”. Yet, cryptography and code do not always collapse.
As Lacan rightly notes, language is not code (quoted in Hayles, 1999), but to the extent that code
parasitically refers beyond its self (like language), then it too is not cryptography. Only once the initial
semiosis of signified to sign occurs, with the necessary violence of abstraction, is the notational system
potentially in place and the new writing becomes cryptographic.

With this framework in place we are finally freed to interpret cryptographic systems on their own terms
(not just their efficacy of “secrecy”), and to evaluate the effects accordingly.

Bitcoin praxis

Before moving on to a description of bitcoin’s effects and uses in light of this framework | will offer an
example of bitcoin praxis. In many ways the bitcoin miner is at the heart of bitcoin cryptography, since it
creates money and verifies transactions. Starting in 2013, | engaged in the practical operation of a
bitcoin miner. What follows is a description of this bitcoin praxis.

As described above, the bitcoin algorithm uses the SHA-256 method of computing hash digests. While
any computing mechanism could in theory calculate a SHA-256 hash, there are certain reasons why
conventional Central Processing Unit (CPU) mining is now rarely used. With even the fastest modern
CPUs running software designed to take advantage of multithreaded computation the number of hashes
computed per second is low compared to other technologies, and because the ability to “win” the
awarded money for a successfully verified block is in competition with other miners, an arms race is
always at hand.

CPUs are usually designed to manage and switch computational tasks, and take care of a variety of sub-
processes, which makes a CPU ideal for general computing but inefficient for performing the same type
of simple calculation repeatedly. Commercially-available Graphics Processing Units (GPUs) are designed
to be relatively free from the management of resources and thus (when appropriately programmed
using low-level software) are able to perform repeated calculations much faster than CPUs. Additionally,
GPUs are designed to work in parallel, so while a multi-core, multithreaded CPU may be able to perform
a certain amount of work in parallel, a modern GPU can perform thousands of computations in parallel.
Some GPUs are ideally suited to perform SHA-256 calculations because they have been designed to
perform XOR logic in a single step, rather than the two steps (or cycles) needed for other devices (the
SHA-256 algorithm relies extensively on XOR transformations). For real-world comparison, on a slightly
aging (2008) Mac Pro computer | was able to perform roughly 30 Kh/s (kilo hashes per second, or
thousands of hashes per second) using the CPU (a server-grade 3GHz quad core Intel Xeon processor).
When | installed a modern mid-level gaming video card (AMD Radeon HD 5850) with a dedicated GPU
the same machine was able to perform roughly 350 Mh/s (millions of hashes per second), using only the
GPU for calculating the hashes.

While 350 Mh/s may seem like considerable computational power—and it is, especially for the corollary
purpose of password cracking—newer technologies have all but obsoleted GPU bitcoin mining. For the
last several years more dedicated bitcoin mining individuals have purchased Field Programmable Gate
Array (FPGA) devices that are tailored to perform these sorts of computational tasks, doing so much
more quickly and with less power consumption. By the end of 2012 the newest type of bitcoin mining
device entered the commercial market, eclipsing even FPGA devices in terms of speed and power
efficiency. These Application-Specific Integrated Circuit (ASIC) devices are custom-designed for bitcoin
mining and thus do so with remarkable speed and power efficiency. As of 2013 there are commercially
available bitcoin miners available for $150USD that perform 5 Gh/s (billions of hashes per second) and
use only 30 watts of power (compared to an average video card’s consumption of 100-150 watts), with
more expensive versions performing hundreds or even thousands of Gh/s.

Efficient bitcoin mining is only possible using specially-built software that is tailored to take advantage of
built-in hardware capabilities. On GPUs the programming language used to write the portion of software
that performs the hash calculations is typically Compute Unified Device Architecture (CUDA) or Open
Compute Language (OpenCL), whereas the high-level software that controls the input/output,
networking, and display of graphical user interfaces can be written in any suitable programming
language. Contemporary cryptography algorithms are highly repetitive, requiring round after round of
simple logic transformations, just like digital signal processing, big data and science computing, and
gaming (computing millions of polygons). For this reason, cryptography shares many of the technologies
and advances with these computing fields.

Result

That the economy is a “slave to the algorithm” is nothing new (Slater, 2013); dominant capital is now
almost exclusively run through digital trading software, and much of the developed world’s “cash”
passes digitally direct from bank to merchant through debit or credit machines at point-of-sale
terminals. Cash money already seems quaint: the stuff of slightly unscrupulous transactions (a manual
trade exchanged for tax-free cash payment), or downright illegal transactions (purchasing drugs).
Cryptography is sought as the way to modernize these old practices. So strong is the belief in
cryptography that a popular rallying cry on (unconsciously libertarian) software developer forums such
as Hacker News is “encrypt everything.” Julian Assange reports that “the universe believes in
cryptography” (Assange et al., 2012)—so it is only natural that our old fashioned human practices
eventually catch up.

What the anarchist hype does tell us, however, is that bitcoin is an ideal site for the investigation of a
politics of cryptography. Far from being simply “neutral”, bitcoin technology reflects a politics in its
history, construction, and use. There are a number of potential ways to understand the politics of
cryptography: as a social phenomenon new articulations to the flow of capital become visible, legal
structures change and ossify, and so on (Castells, 1996; Lessig, 2006). Accepting the lessons from the last
few decades of STS scholarship a more fruitful way might be to attempt to let the technology speak on
its own terms. Established models in this realm include Winner’s “Do artifacts have politics?” (1980) and
most literature informed by Heidegger (Feenberg, 1999; Introna, 2009). Latour’s generally-accepted co-
constitution of technology (Latour and Woolgar, 1986; Latour, 1999, 1993) brings us one step closer to a
machinic description. Finally, the new materialists, Harman’s Object Oriented Ontology (2009), Bennet’s
Vibrant Matter (2010), and Bogost’s Alien Phenomenology (2012), offer radical reformulations of the
politics inherit in technologies.

While drawing on these authors | take my point of departure with Gilles Deleuze’s short “Postscript on
the societies of control” (1992). In this work Deleuze highlights the fact that Foucault’s genealogical
models are transient, and suggests that our contemporary model (adopted from Burroughs and Virilio) is
characterized by control. Deleuze charges his readers not to “fear or hope [for]” these mechanisms but
instead to “look for new weapons” (Deleuze, 1992, p. 4). | argue that cryptography is one such new
weapon in the control society.

Deleuze summarizes Foucault’s periodization of history by reflecting on the “transience of the model” or
what | might call the contingent nature of history. In Discipline and Punish (1979) Foucault argued that
the sovereign society was replaced by the disciplinary one, a transition occurring roughly at the dawn of
the eighteenth society. By pressing the lessons from Order of Things (2002) into the periodization of
Discipline and Punish | see that the sovereign society operated through a logic of Similitude, and the
disciplinary society operated through a logic of Order. According to Deleuze, the next shift occurs at the
“outset of the twentieth” century, towards a control society (Deleuze, 1992, p. 3). The mechanisms of
the disciplinary society were gradually instituted, then accelerated through World War Il which caused
the “environments of enclosure” to suffer a “crisis” (Deleuze, 1992, p. 3).

Deleuze argues that the control society is characterized as a modulation, rather than the “molds, distinct
castings” of the disciplinary society (Deleuze, 1992). Each society is characterized by a kind of language:
the disciplinary society is analogical and the control society is numerical. That we have entered a society
of control is a brilliant (and | think correct) insight, but Deleuze seems to have erred by arguing for a

control society characterized by numerical, or modulating logic. | do not take this to be a point of

interpretive error; Deleuze’s characterization is doubly clear. In the English translation “modulation”
evokes the Latin modus, meaning measurement, accomplished by numbers (“numerical”). Foucault
spends considerable effort in Order of Things showing how measurement and number are a central part
of the logic of the classical era, summed up in the term “order”. If the control society can be cashed out

in terms of order, what has changed?

Foucault’s examples in Order of Things tell a compelling story of order: several fields of study develop in
this period (“general grammar, natural history, and the analysis of wealth”), all which require a mathesis
(“a universal science of measurement and order”), but none use the explicit techniques of mathematics
(the “algebraic method”), nor mechanism (Foucault, 2002, p. 63). Foucault summarizes the relationships
as such, “the analysis of wealth is to political economy what general grammar is to philology and what
natural history is to biology” (Foucault, 2002, p. 182). According to Foucault, the disciplinary society is as
numerical and modulating as ever, it is only the prior sovereign society that is analogical in the sense of
having a logic of similitude.

Perhaps “we have never been modern” (Latour, 1993), and that there is no discontinuity between the
disciplinary society and the control society (or perhaps the control society does not exist). Part of the
challenge may be Foucault’'s examples, items so new in terms of social evolution that we are still
working through the implications. The history of cryptography tells us that while cryptography is a
general writing system—as old as writing itself—its shifting structure maps well on to Foucault’s
characterization in Order of Things: from Similitude to Order. Renaissance cryptography was, on my
interpretation, necessarily a mechanism of discretization and order, but was used for purposes of
similitude. Even as late as Athanasius Kircher (often thought as a man out of his time) cryptography
functioned as simulacra, as a media instrument (Stolzenberg, 2001; Wilding, 2001; Zielinski, 2008). The
cryptographic media instruments paralleled developments in classification and linguistics (the
“Universal” or “Philosophical” language movement), which Foucault (circuitously) dealt with in Order of
Things. As we move past Renaissance history of cryptography Order takes over, discretizing, shifting,
arranging, and creating identities (Cheney-Lippold, 2011).

If Deleuze is correct that we are now in a control society, but mistakenly characterized it with a
disciplinary logic of modulation and numerical control, what is the new logic of control? As

contemporary designers and graphic artists might say, what is the “authentically digital”
control society? | argue that a “new weapon” of the control society—ubiquitous cryptography—

in this new

functions on a logic of order. Cryptography is an ordering machine: it orders each successive realm it
captures.

Cryptography functioned as an ordering machine in the disciplinary society too, but it was a technology
genuinely ahead of its time. With mechanization, and ultimately, digital electrification cryptography
shifted from occasional military application to ubiquitous commercial application. Cryptography now
functions infrastructurally and sits invisibly behind most of the world’s communications (machinic “data”
transmissions such as encrypted Netflix TV streams or Trusted Computing modules, but also human
correspondences such as email communications). As bitcoin and other electronic cash systems become
prevalent, cryptographic ordering will also become more entrenched in the economic realm (it already
functions invisibly at electronic point-of-sale machines, automated bank tellers, financial trading, and so
on). For bitcoin, the specific ordering is the logic of SHA-256 described above: discrete symbols arranged

through a collection of logical transformations, built block by block of irreversible containers with strong
identity parameters (necessarily discrete and unambiguous). The hash digests (“fingerprints”) are then
organized into a tree structure, recalling Deleuze and Guattari’s famous charge, “we’re tired of trees”
(1987, p. 15). Finally, the hash tree is sent through peer-to-peer networks, succumbing to a logic of
collusion and virality.

| will now return to the questions asked at the outset of this paper, how do cryptographic
transformations occur, where does value arise from, and what is the politics of bitcoin itself? As part of
an engineering narrative | offered a description of SHA-256 hash functions. The transformations from
“one space to another” that Shannon articulated contain less mathematical idealism than previously
hoped. On my account SHA-256 is a very concrete transformation of marks to marks, assembled in
complex ways. The mathematics of public-key cryptography are still very much part of the story of SHA-
256, but end up being a contingent factor, not constitutive of cryptography itself. Even the shuffling of
bits in logic tables at the core of the SHA-256 algorithm require human (semiotic) sustenance. In a world
without humans there may still be logic and mathematics, but there cannot be cryptography.

The value of bitcoin arises from its politics, and politics from its value. Ordering mechanisms are some of
the most potent technologies we have. As discovered in Fordism, but also contemporary practices of
intermodal containerized shipping and logistics the ability to control otherwise continuous phenomena
is vastly valuable. If the pre-cryptocurrency metaphor for dominant capital was frictionless “flow” (like
water), the new metaphor should be the rapid growth of crystalline structures. Cash flows, but bitcoin
gets containerized and moved with even greater efficiency.

| have not offered a “position” on cryptography, for these answers are still unsettled. In the early days of
modern computing Norbert Wiener worried about human autonomy becoming subject to machinic
ordering (Hayles, 1999; Wiener, 1965). The idea of becoming subject to our semiotic technologies is
built right into our language about their functioning. Code is powerful because it represents, that is, it
both “re-presents” or makes something present again, and “stands for” or “substitutes” (Prendergast,
2000). Famously, Rousseau worried about the consequences of political representation, fearing any
dictatorial relationship where we permit others to “stand in” for us. Similarly, Heidegger calls
representation the master category of modern thought because it forces the division of subject and
object (Heidegger, 2002; Prendergast, 2000).

More concretely, our cryptographic technologies are at once Privacy Enhancing Technologies (PETs) and
also weapons in the commonplace cyberwars amongst developed nations. Even prosaic questions are
ambiguous. Does Google increase my privacy by encrypting my Gmail communications, now open to
only the machinic display of advertising? Am | better off by having a cryptographically-secure boot
sequence for my computer (and thus preventing the installation of “competitor” operating systems, like
Linux)? Is it a “feature” that bitcoin transactions are cryptographically irreversible? In this new control
society there is no second-guessing your economic decisions, and no need to involve messy legal and
political authorities, since code has become law in frighteningly efficient ways (Lessig, 2006).

This paper responds to Deleuze’s call to “look for new weapons.” | showed how the traditional
conceptualization of cryptography is wanting, which has deeply coloured beliefs about the functioning
and effects of bitcoin. | argued that cryptography is not necessarily about information secrecy (obviating
anarchist hopes), and in particular that this conceptualization is unhelpful for understanding bitcoin. In
its place, a broader conceptualization took its place, built upon a generic framework for understanding

cryptography. This framework suggests that cryptography is indeed politically ambiguous, amounting to
“just” a machinic ordering. Critiquing and reimaging Deleuze’s notion of a control society | suggested
that cryptography is a powerful “new weapon,” functioning as a mechanism of order. As an eminently
cryptographic system, bitcoin is at the forefront of advancing this ordering logic to the economic realm.

References

Aspray, W.F., 1985. The Scientific Conceptualization of Information: A Survey. Annals of the History of
Computing 7, 117-140.

Assange, J., Appelbaum, J., Miller-Maguhn, A., Zimmermann, J., 2012. Cypherpunks. OR Books, New
York.

Back, A., 1997. hash cash postage implementation. Cypherpunks.

Bellman, B.L., 1979. The Paradox of Secrecy. Human Studies 4, 1-24.

Bennett, J., 2010. Vibrant Matter: A Political Ecology of Things. Duke University Press, Durham N.C.

Bogost, I., 2012. Alien Phenomenology, or, What It’s Like to Be a Thing. University of Minnesota Press,
Minneapolis.

Borges, J.L., 2000. Borges: Selected Non-Fictions. Penguin, New York.

Castells, M., 1996. The Space of Flows, in: The Rise of the Network Society. Blackwell Publishing, Oxford,
MA, pp. 376-428.

Chaum, D., 1982. Blind Signatures for Untraceable Payments, in: Rivest, R.L., Chaum, D., Sherman, A.T.
(Eds.), Presented at the Advances in Cryptology Proceedings of Crypto 82, Plenum, pp. 199-203.

Cheney-Lippold, J., 2011. A New Algorithmic Identity. Theory, Culture & Society 28, 164 —181.

Cherry, E., 1953. A history of the theory of information. Information Theory, IEEE Transactions on 1, 22—
43,

Dai, W., 1998. PipeNet 1.1 and b-money. Cypherpunks.

Deleuze, G., 1992. Postscript on the Societies of Control. October 59, 3-7.

Deleuze, G., Guattari, F., 1987. A Thousand Plateaus: Capitalism and Schizophrenia. University of
Minnesota Press.

Feenberg, A., 1999. Questioning Technology. Routledge, New York.

Finney, H., 2004. RPOW - Reusable Proofs of Work. Cypherpunks.

Foucault, M., 1979. Discipline and Punish: The Birth of the Prison. Vintage Books, New York.

Foucault, M., 2002. The Order of Things: An Archaeology of the Human Sciences. Routledge, New York.

Geoghegan, B.D., 2008. Historiographic Conceptualization of Information: A Critical Survey. IEEE Annals
of the History of Computing 30, 66—-81.

Gleick, J., 2011. The Information: A History, a Theory, a Flood, 1st ed. Pantheon Books, New York.

Goodin, D., 2013. Anatomy of a Hack: How Crackers Ransack Passwords Like “geadzcwrsfxv1331”
[WWW Document]. Ars Technica. URL http://arstechnica.com/security/2013/05/how-crackers-
make-minced-meat-out-of-your-passwords/ (accessed 6.3.13).

Goodman, N., 1976. Languages of Art: An Approach to a Theory of Symbols. Hackett Publishing,
Indianapolis.

Harman, G., 2009. Prince of Networks: Bruno Latour and Metaphysics. re.press, Melbourne, Australia.

Hayles, N.K., 1999. How We Became Posthuman: Virtual Bodies in Cybernetics, Literature, and
Informatics. University of Chicago Press.

Heidegger, M., 2002. The Age of the World Picture, in: Young, J., Haynes, K. (Trans.), Off the Beaten
Track. Cambridge University Press, Cambridge UK, pp. 57-85.

Introna, L.D., 2009. Ethics and the speaking of things. Theory, Culture and Society 26, 25-46.

Kahn, D., 1967. The Codebreakers: The Story of Secret Writing. Macmillan, New York.

Kohno, T., Ferguson, N., Schneier, B., 2010. Cryptography Engineering: Design Principles and Practical
Applications. Wiley Publishing, Inc., Indianapolis, IN.

Latour, B., 1993. We Have Never Been Modern. Harvard University Press.

Latour, B., 1999. Pandora’s Hope: Essays on the Reality of Science Studies, 1st ed. Harvard University
Press.

Latour, B., Woolgar, S., 1986. Laboratory Life: The Construction of Scientific Facts, Reprint. ed. Princeton
University Press.

Lessig, L., 2006. Code v2. Basic Books.

Merkle, R.C., 1982. Method of providing digital signatures. 4309569.

Nakamoto, S., 2008. Bitcoin P2P e-cash paper. Cypherpunks.

Prendergast, C., 2000. The Triangle of Representation. Columbia University Press, New York.

Shannon, C., 1945. A Mathematical Theory of Cryptography (No. 20878). Bell Labs, New Jersey.

Shannon, C., 1949. Communication Theory of Secrecy Systems. Bell System Technical Journal 28, 656—
715.

Shannon, C., Weaver, W., 1948. A Mathematical Theory of Communication. Bell Syst. Tech. J 27, 379-
423.

Slater, J.B. (Ed.), 2013. Mute Vol. 3 #4 - Slave to the Algorithm. Mute.

Stolzenberg, D. (Ed.), 2001. The Great Art of Knowing: The Baroque Encyclopedia of Athanasius Kircher.
Stanford University Libraries, Florence, Italy.

Szabo, N., 1997. Formalizing and Securing Relationships on Public Networks. First Monday 2.

Thomsen, S.W., 2009. Some evidence concerning the genesis of Shannon’s information theory. Studies
in History and Philosophy of Science 40, 81-91.

Wiener, N., 1965. Cybernetics. MIT Press.

Wilding, N., 2001. “If You Have A Secret, Either Keep It, Or Reveal It”: Cryptography and Universal
Language, in: Stolzenberg, D. (Ed.), The Great Art of Knowing: The Baroque Encyclopedia of
Athanasius Kircher. CADMO, Firenze, ltalia, pp. 93—-103.

Winner, L., 1980. Do Artifacts Have Politics? Daedalus 109, 121-136.

Zielinski, S., 2008. Deep Time of the Media: Toward an Archaeology of Hearing and Seeing by Technical
Means. The MIT Press.

